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This survey article overviews the impact response of solids and structures within the framework of the wave
theory of impact. It is dedicated to the bright memory of Professor Yury A. Rossikhin who has contributed
a lot in the development of the wave theory of impact based on the theory of discontinuities and ray
expansions, resulting in analytical solutions of intricate problems of impact interaction of solids possessing
different features.
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1. Introduction

The problems connected with the analysis of the shock
interaction of thin bodies (rods, beams, plates, and shells) with
other bodies have widespread application in various fields of
science and technology. The physical phenomena involved in
the impact event include structural responses, contact effects,
and wave propagation (Ref 1). These problems are topical not
only from the point of view of fundamental research in applied
mechanics, but also with respect to their applications. Since
these problems belong to the problems of dynamic contact
interaction, their solution is connected with severe mathemat-
ical and calculation difficulties. To overcome this impediment,
a rich variety of approaches and methods have been suggested
(Ref 1-5), among them the approaches based on the generation
of shock waves (surfaces of strong discontinuity) at the moment
of impact and their further propagation along the bodies are of
greatest practical use (Ref 1, 6-8). These approaches use
hyperbolic sets of equations to describe the dynamic behavior
of thin bodies and are called wave approaches (Ref 1). As for
the non-wave approaches, which use classical equations to
describe the dynamic behavior of thin bodies, then Zener�s
approach (Ref 9), in which a thin body is assumed to be large
enough in order to ignore stable waves, is closely related to the
wave approach. Both non-wave and wave approaches are
finally reduced to one linear or nonlinear differential or integro-

differential equation in some characteristic value, for example,
the indentation, or the contact force, or the thin body�s
displacement at the place of contact.

Usually, it is possible to obtain the solution of such a
nonlinear equation in the form of a power series in time with
integer and/or fractional powers, which suggests that the main
functions of the shock interaction could be represented in terms
of power series both inside and outside the contact domain.

Such an assumption has been verified in approaches
proposed by Professor Yury A. Rossikhin (which have been
overviewed in detail in Ref 1, 10), where the ray series (Ref 6-
8) that involve as a variable the difference between the current
time and the time of the wave arrival at the given point are used
as power expansions outside the contact zone. On the contact
domain boundary, the ray series go over into the power series
with respect to time, while those characteristic values that have
a non-wave characteristic and describe the impact process
inside the contact domain are represented in terms of the power
series in time with unknown coefficients to be determined.

The wave theory of impact based on the ray method was
developed first for elastic bodies such as beams, plates, shells (Ref
11-23), considering different types of materials: isotropic (Ref 11-
17), anisotropic (Ref 21, 22), prestressed (Ref 18-21), and
composites possessing the Cosserat-type microstructure (Ref 23).

Further it has been generalized for thermoelastic bodies (Ref
24-33) considering two models of hyperbolic thermoelasticity:
the Lord-Shulman approach (Ref 34) with thermal relaxation
(Ref 31-33) and thermoelasticty without energy dissipation
(Ref 24-30), which was proposed by Rossikhin in 1978 (Ref
24) and Green and Nagdy in 1993 (Ref 35).

Another extension of the wave theory of impact, which is
very important for engineering applications, was carried out for
viscoelastic bodies (Ref 36-58), Young�s moduli of which are
time-dependent operators defined either via the Kelvin–Voigt
fractional derivative model or via the standard linear solid
fractional derivative model (the review of the fractional calculus
models and their application in dynamic problems of mechanics
of solids and structures could be found in Ref 59-61).

This survey is dedicated to the bright memory of Professor
Yury A. Rossikhin (1944–2017), who was a Distinguished
Researcher of the Russian Federation, a Highly Cited
Researcher due to Web of Science records, and a scientist with
the encyclopedical knowledge in Dynamics of Solids and
Structures, involving wave theory of impact.
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2. Modeling the Elastic Impact Response of Thin
Bodies Based on the Hertzian Contact Law
or Its Modifications

The problems dealing with the impact response of elastic
thin bodies accompanied by transient wave propagation have
been overviewed in the state-of-the-art article by Rossikhin and
Shitikova (Ref 1), which was published in 2007 in The Shock
and Vibration Digest, wherein all the papers that are of interest
in our consideration have been classified by the characteristic of
the interaction of thin bodies with other bodies within the
contact domain, as well as by the characteristic behavior of the
thin bodies outside the contact region. In turn, the types of
interaction and behavior are dictated by the dimensions of the
thin bodies and the shape of an impactor and are governed by
the set of equations that describe their dynamic response, by the
type of contact force, and so on.

In Ref 1, thin bodies of infinite extent and of finite
dimensions have been considered, the dynamic behavior of
which is described by both classical and non-classical systems
of equations. Thus, the contact force may be linear or nonlinear,
and it may be dependent on displacements or on velocities of
displacements, or both. Impactors may possess the shape of a
sphere, a short cylinder, a long rod, etc.

In the present paper, we will first mention briefly the
backgrounds of the elastic impact approach and provide the
main idea of the ray expansions in the wave theory of impact in
order to focus then on the results obtained in the field during
last decade.

2.1 The Hertz Contact Law

It is well known that in the case when the impactor�s initial
velocity is rather low, a transverse shear wave propagates along
a thin body (a) either with an infinitely large velocity
(Bernoulli–Euler beam, Kirchhoff–Love plate) or (b) with a
finite velocity (Timoshenko beam, Uflyand–Mindlin plate). The
motions of impacted bodies outside the contact domain are

described usually by equations of vibrations generated by the
action of a concentrated contact force.

During the loading phase, the contact force P is related to
the indentation a

P ¼ kan ðEq 1Þ

until the maximum indentation amax and the corresponding
maximum force Pmax are reached. According to the Hertzian
theory of contact (Ref 62) n = 3/2

P ¼ ka3=2 ðEq 2Þ

where

k ¼ 4

3
E� ffiffiffi

R
p

¼ 4
ffiffiffi

R
p

3pðkim þ ktÞ
ðEq 3Þ

1

R
¼ 1

Rim
þ 1

Rt
ðEq 4Þ

1

E� ¼
1� r2im
Eim

þ 1� r2t
Et

¼ pðkim þ ktÞ ðEq 5Þ

Here Rim, Eim, rim and Rt, Et, rt are the radius, Young�s
modulus and Poisson�s ratio of the impactor and target,
respectively. In this case, the radius of the contact zone a is
connected with the relative displacement a as

a ¼ R1=2a1=2 ðEq 6Þ

To account for the permanent deformation and to model the
unloading phase, Crook (Ref 63) proposed the equation

P ¼ Pmax
a� acr

amax � acr

� �q

; amax � a � acr ðEq 7Þ

where acr is the permanent crater depth, and q = 1.5–2.5 is the
material constant.

2.2 Impact upon Beams and Plates of Finite Dimensions

Timoshenko (Ref 64) considered the problem on a trans-
verse impact of an elastic sphere upon an elastic Bernoulli–
Euler beam. In this problem, the equations of motion of a
projectile and a beam have the form

m€y ¼ �PðtÞ ðEq 8Þ

EI
@4w

@x4
þ qF €w ¼ PðtÞdðx� nÞ ðEq 9Þ

with the initial conditions

yð0Þ ¼ 0 ; _yð0Þ ¼ V0 ; wðx; 0Þ ¼ 0 ; _wðx; 0Þ ¼ 0

ðEq 10Þ

where w is the beam�s deflection at the point of contact, EI is the
beam�s bending rigidity, I andF are themoment of inertia and cross-
sectional area, respectively, V0 is the initial velocity of impact,
dðx� nÞ is the Dirac delta-function which positions the point n of
the contact force application, a dot denotes the time-derivative,m is
the mass of the sphere, y is the displacement of the sphere

y ¼ aþ wðn; tÞ ðEq 11Þ
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and local bearing a of the impactor�s and target�s materials at
the contact point

a ¼ k�3=2P2=3 ðEq 12Þ

Integrating equations (Eq 8) and (Eq 9) due with account
for the initial conditions (Eq 10), we could obtain the functional
equation either for determining the contact force P(t)

V0t�
1

m

Z

t

0

Z

t1

0

Pðt2Þdt2dt1¼k0P2=3þ
X

n

An

Z

t

o

PðsÞsinxnðt�sÞds

ðEq13Þ

or for the indentation a

€aþ k
1

m
þ
X

nð Þ
xnAn

0

@

1

A a3=2

� k

Z

t

0

a3=2 sð Þ
X

nð Þ
x2

nAn sinxnðt � sÞds

¼ 0 ðEq 14Þ

where the coefficients An depend on the eigenfunctions and
eigenvalues xn of the problem under consideration. Equa-
tions (Eq 13) and (Eq 14) could be solved numerically (Ref 2).

The basic approach by Timoshenko (Ref 64) was used by
Karas (Ref 65) for analyzing the impact response of a
rectangular simply supported Kirchhoff–Love plate. A lot of
references to works using this approach could be found in Ref
1.

2.3 Impact upon Infinitely Extended Thin Bodies

Zener (Ref 9) was a pioneer in solving the problem of the
elastic normal impact of spheres with infinitely large Kirch-
hoff–Love plates. Because of its importance, this problem can
be placed along with the Timoshenko problem (Ref 64).

Infinite dimensions of the plate allowed Zener (Ref 9) to
obtain the relationship between the plate�s mid-plane displace-
ment directly underneath the point of load application and the
impulse of the contact force:

wð0; tÞ ¼ b
Z

t

0

PðtÞdt ðEq 15Þ

or

_wð0; tÞ ¼ bPðtÞ ðEq 16Þ

where b ¼ 1
8 ðDqhÞ

�1=2, and D is the cylindrical rigidity,
resulting in

€aþ 3

2
ba1=2 _a ¼ � k

m
a3=2 ðEq 17Þ

where b = b k.
Putting A ¼ _a and going from the independent variable t to

the new independent variable a, we are led to the equation (Ref
1)

A
dA

da
þ 3

2
ba1=2A ¼ � k

m
a3=2 ðEq 18Þ

subjected to the initial condition Aja¼0¼ V0.

The analytical solution of this nonlinear differential equation
was presented in Ref 1 in the following form:

A ¼ V0 þ
X

1

i¼1

aia
ð2iþ1Þ=2 þ

X

1

i¼1

bia
i ðEq 19Þ

Substituting (Eq 19) into equation (Eq 18) and equating the
coefficients at integer and fractional powers of a, we are led to
the set of two recurrent equations for defining the coefficients ai
and bi.

Zener�s approach became very popular, and a huge amount
of problems dealing with impact response of plates and shells
including with anisotropic and composite materials have been
solved (see references in Ref 1).

2.4 Combining the Hertzian Contact Theory with the Wave
Approach

In the case when dynamic behavior of the target is described
by the so-called Timoshenko-type theories considering the
rotary inertia and transverse shear deformations (a Timoshenko
beam, an Uflyand–Mindlin plate or Reissner-Ambatsuymyan
shell, or other refined theories of higher order), the local
indentation during contact interaction of bodies could be
analyzed according the Hertzian contact theory or its modifi-
cations as well; however, the dynamic deformation of the
target�s material outside the contact domain now is caused by
the propagating transient wave of transverse shear generated at
the moment of impact. Thus, the approaches discussed in
previous section 2.1 are inapplicable in such cases. The wave
approach could be in use to solve the problems of such a kind.

For this purpose, Professor Rossikhin suggested to utilize
the theory of discontinuities based on the ray expansions (Ref
8), according to which the solution behind the front of the wave
of the strong discontinuity R is constructed in terms of the ray
series (Ref 6)

Zðs; tÞ ¼
X

1

k¼0

1

k!
Z;ðkÞ
� �

t¼s=G
t � s

G

� �k
H t � s

G

� �

ðEq 20Þ

where Z is the desired function, Z;ðkÞ ¼ @kZ=@tk ,
Z;ðkÞ
� �

¼ Z;þðkÞ �Z;�ðkÞ, the signs ‘‘+’’ and ‘‘–’’ refer to the
magnitudes of the derivative Z,(k) calculated before and behind
the wave surface R, respectively, G is the normal velocity of the
wave R, H(t � s/G) is the unit Heaviside function, s is the arc
length calculated along the ray, and t is the time.

If the duration of the process is small, then one could be
restricted to the first term of the ray series (Eq 20) only. In this
case, the problem is reduced to the solution of one nonlinear
differential equation with respect to the value characterizing the
local indentation or with respect to the contact force. The
solution of such an equation is either constructed in terms of a
power series with fractional exponents or found numerically.

In order to refine the one-term solution, succeeding terms of
the ray series could be taken into account. For this purpose, one
should differentiate the governing equations for the contacting
body k times with respect to time, write them on the different
sides of the wave surface, and take their difference. Then the
conditions of compatibility should be used, which in many
practically important cases take the following form for the
physical components of the desired values (Ref 66):
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¼ � Z;ðkþ1Þ
� �

þ
d Z;ðkÞ
� �

dt
ðEq 21Þ

where s is the spatial coordinate along the straight ray, and the
other two spatial coordinates are at a time the surface
coordinates on the wave surface; thus, all three coordinate
lines are mutually orthogonal, and d/dt is the Thomas d-
derivative (Ref 67).

The recurrent relationships obtained as a result of such a
procedure allow one to determine entering into the ray series
(Eq 20) discontinuities in the derivative of the desired function
with respect to time of any order.

2.4.1 Application of One-Term Ray Expansions Outside
the Contact Domain. This approach was first used by Crook
(Ref 63) when solving the problem on a longitudinal elastic
impact of a sphere against an elastic bar (Fig. 1).

On the shock wave front and behind it up to the contact
boundary, the dynamic condition of compatibility is fulfilled

r ¼ �q0G0V ðEq 22Þ

where r is the stress, G0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

E0=q0
p

is the velocity of the shock
wave, V is the velocity of the bar�s particles along its axis, E0 is
the bar�s modulus of elasticity, and q0 is its density.

The contact force acting on the sphere takes the form

P ¼ q0G0FV ðEq 23Þ

Considering equation (Eq 23) and the twice integrated equation
of the sphere motion (Eq 8), from equation (Eq 11), we could
finally find

a ¼ V0t �
1

m

Z

t

0

dt1

Z

t1

0

Pðt2Þdt2 �
1

q0G0F

Z

t

0

PðtÞdt ðEq 24Þ

If we substitute equation (Eq 12) into equation (Eq 24), then
we obtain the functional equation with respect to the contact
force P, while differentiating equation (Eq 24) twice with
respect to time taking into account equation (Eq 2), we are led
to equation (Eq 17), wherein b = k(q0G0F)

�1.
Wave approach has been extended to the problems of shock

interaction of a sphere with a Timoshenko beam and with an
Uflyand–Mindlin plate (Ref 1, 68). It is sometimes essential to

take into account the extension of a middle surface in problems
dealing with the shock interaction of impactors with thin-walled
bodies, which are rather flexible elements of structures (Ref 1,
14, 15). Thus, in the later problem the motion of the impactor is
described by (Eq 8), while the motion of the contact spot is
governed by the following equation:

2paNr
@w

@r
þ 2paQr þ PðtÞ ¼ qhpa2 _W ðEq 25Þ

where W ¼ _w, w is the deflection, a is the radius of the contact
spot defined by equation (Eq 6), Qr is the transverse force, Nr is
the force acting in the plate plane in the r-direction, and R is the
sphere�s radius (Fig. 2).

The dynamic behavior of a circular elastic isotropic plate of
an Uflyand–Mindlin type in the polar coordinate system r, u, z
is described by the following set of equations:

1

r
ðMr �MuÞ þ

@Mr

@r
þ Qr ¼ qI _Br;

_Mr ¼ D
@Br

@r
þ r

Br

r

� �

;

_Mu ¼ D
Br

r
þ r

@Br

@r

� �

@Qr

@r
þ Qr

r
¼ qh _W ; _Qr ¼ Klh

@W

@r
� Br

� �

ðEq 26Þ

1

r
ðNr � NuÞ þ

@Nr

@r
¼ qh _Vr; _Nr ¼ E0h

@Vr

@r
þ r

Vr

r

� �

;

_Nu ¼ E0h
Vr

r
þ r

@Vr

@r

� �

where Nu is the force acting in the plate plane in the u-
direction, Mr and Mu are the bending moments, Vr ¼ _ur is the
displacement velocity along the radius, Br ¼ _br is the angular
velocity of the normal in the r-direction, D ¼ E0I is the plate
cylindrical rigidity, E0 ¼ Eð1� r2Þ�1; I ¼ h2=12; and K ¼
p2=12 is the shear coefficient.

At the moment of impact, a shock wave (i.e., a surface of
strong discontinuity) is generated in the plate, which is
interpreted as a layer of the thickness d, within which the
desired function Z is changed from the magnitude Z� to the

Fig. 1 Longitudinal impact of an elastic sphere with a bar (Ref 1)
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magnitude Z+ remaining a continuous function. Then, integrat-
ing governing equations over the layer�s thickness from � d/2
to d/2, tending d to zero, and considering that according to
(Eq 21) within the layer

_Z � �G
@Z

@r
ðEq 27Þ

we obtain the dynamic conditions of compatibility

½Qr� ¼ �qhG½W �; �G½Qr� ¼ Klh½W � ðEq 28Þ

½Nr� ¼ �qhG½Vr�; �G½Nr� ¼ E0h½Vr� ðEq 29Þ

whence it follows that the velocities of the quasi-longitudinal
wave G(1) and quasi-transverse wave G(2)

Gð1Þ ¼ E0

q

� �1=2

ðEq 30Þ

Gð2Þ ¼ Kl
q

� �1=2

ðEq 31Þ

and the discontinuities in the transverse force and longitudinal
force

Qr ¼ �qhGð2ÞW ; Nr ¼ �qhGð1ÞVr ðEq 32Þ

Now substituting (Eq 32) in (Eq 25) and considering that
(Ref 1)

Nr ¼ qGð1Þ2að1� rÞ=r; ðEq 33Þ

we arrive at the following equation for A ¼ _a

A
dA

da
þ gb

eaþ gð Þ2
A ¼ � k

m
a3=2 ðEq 34Þ

where

b ¼ k

2pqR1=2
; e ¼ Gð1Þ2

Gð2Þ2
1� rð Þ
r

; g ¼ Gð2Þh

If we ignore the deformation of the middle surface (i.e.,
putting e = 0), then the analytical solution of (Eq 34) takes the
form

Fig. 2 Schematic diagram of an elastic impact upon an Uflyand–Mindlin plate considering the extension of its middle surface: (a) at the initial
moment of impact t = 0, and (b) during the impact interaction t > 0

A ¼ V0 � a1aþ a2a
5=2 þ

X

1

n¼2

anþ1a
ð2nþ3Þ=2 ðEq 35Þ

where

anþ1 ¼
Y

n

m¼2

2mþ 1

2mþ 3

� �

a1
V0

� �n�1

a2; a2 ¼ � 2

5

k

V0m
;

a1 ¼ k 2pqhGð2ÞR1=2
� ��1

Integrating yields an approximate solution for a as follows

a � V0t �
1

2
a1V0t

2 þ 2

7
a2V

5=2
0 t7=2 ðEq 36Þ

The coefficients a1 and a2 are defined by the two different
processes being caused by the shock interaction: the coefficient
a1 is responsible for the dynamic processes arising in the plate
during propagation of the surfaces of the discontinuity, but the
coefficient a2 answers for the quasi-static processes occurring at
the local bearing of the material due to Hertzian theory.

This approach was extended for the analysis of the impact
response of thin-walled beams of open profile without (Ref 1)
and with due account (Ref 1, 15) for the middle surface
extension. Nonlinear equation in terms of a was obtained
similar to (Eq 34) with the corresponding analytical solution.

A normal impact of another type of the projectile in a form of a
long cylindrical rod of the radius r0 with a rounded end (Fig. 3)
was also considered (Ref 1, 12). At the moment of impact, a
longitudinal shock wave is generated in the rod, which propa-
gates with the velocityG0. The rod�s length is such that the wave
reflected from its free end has no time to reach the place of contact
before the completion of the impact process. Behind the front of
this wave, the dynamic condition of compatibility is fulfilled

r� ¼ q0G0ðV0 � V�Þ ðEq 37Þ

where r� and V� are the stress and velocity behind the wave
front, which are valid up to the contact spot.

Suppose, for simplicity, that the radius of the contact spot is
equal to r0. Within the contact domain of the rod with the plate,
the condition (Eq 37) takes the form

P ¼ pr20q0G0ðV0 �W � _aÞ ðEq 38Þ

where the contact force is defined by (Eq 2).
The governing nonlinear equation was found (Ref 1, 15)
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€aa1=2 þ _a
3k

2q0G0pr20
aþ 2Gð2Þ

r1=20

 !

þ k

qhpr0
aþ 2Gð2Þk

q0G0pr
5=2
0

a3=2

¼ 2Gð2ÞV0

r1=20

ðEq 39Þ

the solution of which could be constructed using the procedure
described above.

The more intricate case when the motion of the rod is
accompanied by its rotation was studied in Ref 1.

2.4.2 Application of Multiple-term Ray Expansions
Outside the Contact Domain. Using multiple-term ray
expansions (Eq 20) and conditions of compatibility (Eq 21)
for equations of motion of the Uflyand–Mindlin plate (Eq 26),
the following ray series were constructed for the velocity of the
plate�s deflection W and transverse force Qr (Ref 1):

W ffi
X

2

a¼1

X

1

k¼0

1

k!
W;ðkÞ
� �ðaÞ

yað ÞkH yað Þ ðEq 40Þ

Qr ffi Klh
X

2

a¼1

X

1

k¼0

1

k!
�½W;ðkÞ�ðaÞGðaÞ�1 þ

d½W;ðk�1Þ�ðaÞ

dt
GðaÞ�1

 

�½Br;ðk�1Þ�ðaÞ
�

ðyaÞkHðyaÞ

ðEq 41Þ

where ya ¼ t � ðr � aÞGðaÞ�1; and the values ½W;ðk�1Þ�ðaÞ and
½Br;ðk�1Þ�ðaÞ and their d-derivatives are calculated at ya ¼ 0:

The following equations are fulfilled in the contact domain:
the equation of motion of the contact spot (Eq 25), the equation
of the sphere�s motion (Eq 8), and the boundary condition
within the contact domain

@W

@r

�

�

�

�

r¼a

¼ 0 ðEq 42Þ

and the initial condition

W jt¼0¼ 0 ðEq 43Þ

The solution of the enumerated equations, which form a
system, is constructed with the help of the ray series (Eq 40)
and (Eq 41) at ya = t, while the expression for the indentation a
is chosen in the form

a ¼ V0t þ
X

1

i¼1

ait
iþ1 ðEq 44Þ

where ai (i = 0,1,…) are yet unknown constants.
If we substitute relationships (Eq 40), (Eq 41), and (Eq 43)

in the given set of equations and equate the coefficients at equal
powers of t, then it is possible at each step to obtain three
equations in three unknown constants, as the ray expansions
and the function a(t) involve two constants and one constant,
respectively. However, when choosing a(t) in the form of
(Eq 44), the radius of the contact domain

a ¼ R1=2a�1=2 1þ 1

2

	

a��1V0ðt � t�Þ þ � 1

4
a��2V 2

0 þ a��1a1

� �

� 1

2
ðt � t�Þ2 þ 9

8
a��3V 3

0 � 3

2
V0a1a

��2 þ 3a2a
��1

� �

� 1

6
ðt � t�Þ3 þ 	 	 	




ðEq 45Þ

since the shock waves go outside the contact domain only at
t > t� ¼ RV0

2Gð1Þ2 and propagate with the velocity G(1) (Ref 1, 11,
13).

The time dependence of the contact force for steel and
aluminum plates of various thicknesses is shown in Fig. 4, from
which it is seen that the data presented are in good agreement
with the experimental results from Goldsmith (Ref 2).

2.5 Utilizing Non-classical Theories Considering Shear
Deformations, Rotary Inertia and Changes
in Microstructure for Describing Dynamic Behavior
of Thin Bodies

One hundred years have passed since Stephen Timoshenko
in his pioneer works (Ref 69, 70) generalized the Bernoulli–
Euler beam model introducing into consideration two indepen-
dent functions: the displacement of the center of gravity of
beam�s cross section and rotation of its cross section around the
longitudinal central axis. Further Timoshenko approach was
extended to plates and shells (Ref 71-74). The structural
mechanics community has celebrated this event by a set of
papers, among them the survey (Ref 75), wherein an interesting
reader could find a lot of references in the field.

Fig. 3 Schematic diagram of an elastic cylindrical bar shock interaction with an Uflyand–Mindlin plate: (a) before impact, and (b) during the
contact interaction
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One of the limitations of the Timoshenko theory is that in
the governing equations there exists a certain correction factor
K (shear coefficient) which should be determined experimen-
tally, and depending on the character of the experiment it can
take on different magnitudes. Thus, K2 = 5/6 is suggested in
Ref 73, 74, and the values 2/3 and 8/9 can be found in Ref 70
and (Ref 71). Mindlin (Ref 72) suggested determining K2 for
plates reasoning from comparison of the elastic wave velocity
on the basis of the accepted model with the corresponding
velocity found by virtue of the 3D equations of the theory of
elasticity. Then the magnitude of K2 ranges from 0.76 to 0.91
with variation of the Poisson�s ratio between 0 and 0.5.
Sometimes the magnitude K2 = p2/12 (Ref 72, 76) is in use,
which is obtained from comparison of the frequencies of the
first antisymmetric mode of vibrations of a rectangular
extended plate found by the strict theory and by the relation-
ships taking shear and rotary inertia into account.

Kaneko (Ref 77) carried out an excellent review of all the
various shear coefficients that have been tried before 1975.
Later on, in 2001, Hutchinson (Ref 78) discussed shear
coefficients for different geometries of the beam�s cross section,
in so doing shear coefficients depend on the Poisson�s ratio and
dimensions of the cross section. Zhilin (Ref 79) proposed the
shear coefficient K2 = 5/(6 � r) for a plate under bending
deformation. The determination of transverse shear stiffnesses
for sandwich and laminated plates could be found in Altenbach
(Ref 80).

An alternative method of constructing the basic relationships
of the theory of thin bodies is to expand the displacements or
stresses into the series (power or functional) with respect to the
normal coordinate and to hold a certain truncated series
depending on the required accuracy and the character of a
problem (Ref 81). Substituting these series into the boundary
conditions on internal and external surfaces of a thin body
results in differential equations, and substitution into the 3D
equations of elasticity leads to recurrent symbolic relationships
allowing one to determine all coefficients of the higher-order
expansions. Under this approach, particular values entering by
artificial means (as the shear factor in the Timoshenko model

and its generalizations) are absent in the coefficients of
equations. However, the cumbersome mathematical treatment
and the severity of equations and boundary conditions are the
essential drawbacks of this approach.

What is the main purpose to take shear deformations and
rotary inertia into account in boundary-value dynamic prob-
lems? The matter is fact that thin-walled bodies in different
engineering applications are often subjected to nonstationary
transverse loads, resulting in the generation of transient waves
of transverse shear which should be taken into consideration
(Ref 7, 10, 20). Classical equations describing the dynamic
behavior of thin bodies exclude the propagation of such waves.
However transient waves propagate in the form of wave
surfaces of strong or weak discontinuity. That is why it is quite
natural for solving such problems to utilize the theory of
discontinuities, which is based on the ray expansions and
conditions of compatibility considering transverse deformations
of thin bodies. In doing so, it is necessary to start from the
three-dimensional equations describing the behavior of the
material which the thin body is made of.

Such a novel approach, despite to the Timoshenko-type
theories, does not involve new material constants such as the
shear coefficient K, which is rather hard to be determined
experimentally for many thin-walled structures, shells or thin-
walled beams with open or closed profile as examples.

This approach has been developed by Professor Rossikhin
and his research team since 2007, and during ten years an
orderly theory describing the dynamic response of such thin
bodies as elastic plates and shells (Ref 10), elastic beams (Ref
82), elastic spatially curved beams of open profile (Ref 16),
thermoelastic thin-walled beams (Ref 83, 84) and thin-walled
beams of open profile made of Cosserat pseudo-continuum (Ref
23, 85), has been created. The compact analytical expressions
have been obtained for the velocities of the generalized
displacements and the contact force, which easily could be
calculated numerically and could be utilized by practical
engineers for solving different dynamic contact interaction
problems.

Recently the interest to the analysis of composite structures
using Cosserat theory has been renewed (Ref 86) owing to the
appearance of efficient techniques allowing one to reconstruct
Cosserat moduli in materials using long waves (Ref 87) or to
derive Cosserat moduli via homogenization of heterogeneous
elastic materials (Ref 88). However it should be noted that in
the majority of publications in the field, the authors have
limited themselves by the consideration of static problems (Ref
86, 88) or harmonic wave propagation (Ref 87) (an interested
reader could also find a lot of useful references within the
above-mentioned articles Ref 23, 85-88).

2.5.1 Impact of an Elastic Rod with a Rounded End
Against a Thin-Walled Beam of Arbitrary Open Pro-
file. The problem of impact of a long elastic rod with a
rounded end against a three-layered thin-walled spatially
curved Cosserat beam of arbitrary open cross section (Fig. 5)
has been considered recently by Rossikhin and Shitikova (Ref
23) starting from the three-dimensional equations of the
Cosserat continuum (Ref 89), which on the wave surface of
strong discontinuity have the form (Ref 23):

½rij;ðkþ1Þ� ¼ k½vl;lðkÞ�dij þ l ½vi;jðkÞ� þ ½vj;iðkÞ�
� 

þ a ½vi;jðkÞ� � ½vj;iðkÞ� � 2 2nji ½xn;ðkÞ�
� 

ðEq 46Þ

Fig. 4 Time dependence of the contact force during shock
interaction of a steel sphere of R = 6.356 mm with initial velocity
V0 = 45.8 m/s with a plate of Rp= 300 mm: solid lines, steel plate
(wave solution); dashed lines, aluminum plate (wave solution);
circles, steel plate with h = 12.7 mm (solution cited in Goldsmith,
Ref 2)
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½lij;ðkþ1Þ� ¼ b½xl;lðkÞ�dij þ c ½xi;jðkÞ� þ ½xj;iðkÞ�
� 

þ e ½xi;jðkÞ� � ½xj;iðkÞ�
� 

ðEq 47Þ

½rij;jðkÞ� ¼ q½vi;ðkþ1Þ� ðEq 48Þ

2nji ½rnj;ðkÞ� þ ½lij;jðkÞ� ¼ J ½xi;ðkþ1Þ� ðEq 49Þ

where rij is the stress tensor, lij is the moment stress tensor, 2kij

are the Levi–Civita tensor components, ui is the displacement
vector, vi ¼ _ui is the velocity vector, an index after a coma
labels a derivative with respect to the corresponding coordinate,
wi is the angular rotation vector, xi ¼ _ui is the angular velocity
vector, dij is the Kronecker�s symbol, J is the moment of inertia,
k; l; a; b; c and e are material constants, and xi (i = 1,2,3) are
Cartesian coordinates.

Now writing the compatibility conditions for the displace-
ments on the front of the shock wave and considering that there
are no cracks, i.e., ½ui� ¼ ½wi� ¼ 0, we find

½ui;j� ¼ �G�1½vi�kj þ
@uinj
@n

	 


ðEq 50Þ

½wi;j� ¼ �G�1½xi�kj þ
@winj
@n

	 


ðEq 51Þ

The second terms in (Eq 50) and (Eq 51) are remained in
order to take the transverse deformation of the shell into
account in further treatment. Considering that on the free
surface of the beam

½rij;ðkÞ�mj ¼ 0; ½lij;ðkÞ�mj ¼ 0

using further the assumption

½rij�ninj ¼ ½lij�ninj ¼ 0

corresponding to the condition of nonpressing of beam�s layers
on each other during the wave front propagation, the velocities
of transient waves have been found and classified as follows
(Ref 23, 85):
velocity of the quasi-longitudinal wave

G1 ¼
ffiffiffiffi

E

q

s

ðEq 52Þ

velocity of the quasi-shear wave

G2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

lþ a
q

r

ðEq 53Þ

velocity of the quasi-rotational micropolar wave

G3 ¼
ffiffiffi

e

J

r

ðEq 54Þ

and velocity of the quasi-flexural micropolar wave

G4 ¼
ffiffiffiffiffiffiffiffiffiffi

cþ e
J

r

ðEq 55Þ

From the found four velocities of propagation of transient
waves (surfaces of strong discontinuity), it is seen that (1) they
depend only on material constants, and (2) only one micropolar
modulus a, which governs the asymmetry of the stress tensor,
influences the velocity of the quasi-shear wave G2, while the
Láme moduli k and l do not affect the velocities of Cosserat
waves, i.e., the third G3 and fourth G4 waves which are
generated due to micropolar rotations.

Behind the shock wave front propagating with the velocity
G0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

E0q�1
0

p

along the elastic rod after its collision with the
beam, the stress and velocities of the rod�s particles could be
represented by the following ray series (Ref 23):

r� ¼ �
X

1

k¼0

1

k!

@kr
@tk

	 


t � n

G0

� �k

ðEq 56Þ

v� ¼ V0 �
X

1

k¼0

1

k!

@kv

@tk

	 


t � n

G0

� �k

ðEq 57Þ

which allow to define the contact stress rcont ¼ r�jn¼0

rcont ¼ qG0 V0 � vnð Þ ðEq 58Þ

and the contact force

P ¼ pr20q0G0 V0 � vnð Þ ðEq 59Þ

But in this problem, the contact force could be also found
from the Hertz contact law

P ¼ k#3=2 ðEq 60Þ

where k is the rigidity coefficient depending on the geometry of
colliding bodies and their elastic constants (Eq 3).

Equations of motion of the contact domain (Fig. 5) could be
written in the form (Ref 23)

2Qkx þ P sin b s1ð Þ ¼ 0; 2Qky þ P cos b s1ð Þ ¼ 0 ðEq 61Þ

2MA þ Peðs1Þ ¼ 0; 2Mm
k þMðPÞ ¼ 0

where M(P) is the moment which is generated within the
contact layer due to the action of the contact force which
induces the moment stresses in the core of the contact layer.
Since the contact force P is considered to be small and
M(0) = 0, then the moment M(P) could be approximated as

Fig. 5 Scheme of the impact interaction
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M Pð Þ � M 0 0ð ÞP;, where a prime denotes the derivative with
respect to P.

An approximate solution of the set of equations (Eq 59-61)
has been found in Ref 23 as

# � V0t 1� 2

5
V 1=2
0 jt3=2

� �

ðEq 62Þ

where

j ¼ k
1

pr20qG0
þ 1

2
qG2ð Þ�1 F�1 þ IAp

� �1
eðs1Þlðs1Þ

	 
�

þ 1

2
JFG3ð Þ1lðs1ÞM 0ð0Þ

�

;

ðEq 63Þ

whence it follows the contact duration

tcont ¼
5

2
V�1=2
0 j�1

� �2=3

ðEq 64Þ

The maximal indentation #max is reached at _# ¼ 0

#max ¼
V0

j

� �2=3

ðEq 65Þ

corresponding to the maximum of the contact force

Pmax ¼ k#3=2
max ¼ kV0j

�1 ðEq 66Þ

From relationship (Eq 63), it is seen that the influence of
micropolar effect is described via the third term in the
coefficient j. Assuming that M¢(0) > 0, it follows that the
coefficient j defined by (Eq 63) is larger in magnitude than that
obtained in Rossikhin and Shitikova (Ref 20) for an elastic
isotropic thin-walled beam of open profile impacted by an
elastic rod with a rounded end.

Reference to (Eq 63-66) shows that the account for
micropolar properties of the target material results in the
decrease in magnitudes of all key parameters of the impact
interaction, namely the indentation #, its maximal value # max,
the contact duration tcont, and the maximal contact force Pmax,
as compared with those obtained in Ref 20 during the analysis
of the impact response of the elastic isotropic thin-walled beam
of open generic profile. In other words, the three-layered beams
possessing micropolar properties are more impact resistance
than the beams made of only one isotropic material.

3. Modeling the Impact Response of Thin Bodies
Without Utilizing the Hertzian Contact Law

In this section, we consider some alternative approaches for
solving dynamic problems of shock interaction, which are
based on relationships different from the Hertzian contact law.
These contact laws are modeled by linear or nonlinear springs
or the combination of a spring with a damper.

As shown in the previous Sect. 2, the inclusion of the local
deformation at the point of contact yields a nonlinear term in
the integral equations (Eq 13) and (Eq 14) or the differential
equation (Eq 17), and they have to be solved either numerically
for bodies of a finite extent or by power series for bodies of an

infinite extent. In certain cases, however, the frequency of the
structural response is very low when compared to the high
frequencies associated with local deformation, or the local
deformation is much smaller as compared with the target
deflection. Consequently, the local bearing could be neglected,
and the resulting equation of motion during impact can be
solved analytically, even for the cases when the motion of the
target is described by nonlinear differential equation (Ref 90).

In some problems, local deformations at the place of contact
are absent because of the nature of the problem or the problem
statement. As an example is the impact by a thin rod with a
plane end (Ref 1, 12, 24). Thus, the dynamic response of a
prestressed transversely isotropic plate to impact by an elastic
flat-end rod has been investigated in Rossikhin and Shitikova
(Ref 18) using this approach. It has been shown that as the
radial compression forces assess the critical magnitude, the
velocity of the transient wave of transverse shear and its
amplitude vanish. This leads to the fact that the portion of the
impact energy that is expended on work of transverse forces is
completely absorbed by the contact spot, resulting in the
occurrence of the damage area within the contact region.

3.1 Modeling the Contact Interaction of Thin Bodies Via
a Linear Elastic Spring

Linearization of the contact deformation is often useful for
investigating the shock interaction of solids (Ref 1, 3). This can
be done in different ways, and some examples are considered
below.

3.1.1 Approach Based on One-Term Ray Expansions
Outside the Contact Domain. It should be mentioned that
this approach was first used by Conway and Lee (Ref 91) to
analyze the impact between an indenter and a large elastic plate
through a linear spring when investigating the mechanics of the
printing process. The plate was sufficiently large to ignore
reflections from its boundaries, so the velocity of the contact
spot was proportional to the contact force; that is, equation
(Eq 15) proposed by Zener (Ref 9) was valid. An elastic spring
was located between the target and the indenter, so the contact
force could be connected with the displacements of the indenter
and the contact spot (the plate�s displacement at the place of
contact) by the following relationship:

P ¼ E1ða� wÞ ðEq 67Þ

where E1 is the spring rigidity, and a and w are the
displacements of the spring�s upper and lower ends, respec-
tively.

The problem of the collision of a body with an Uflyand–
Mindlin plate through a linear elastic cylindrical spring with the
radius of r0 (Fig. 6) was considered in Ref 1. In order to obtain
in this case the differential equation for determining the contact
force, it is sufficient to use equation (Eq 67) twice differentiated
in time, the equation of impactor motion (Eq 8), the dynamic
conditions of compatibility (32), and the equation of motion of
the contact spot (25) at a = r0.

Then the problem is reduced to a set of two equations:

M €w ¼ �MB1 _wþ E1ða� wÞ
mð€aþ €wÞ ¼ �E1ða� wÞ

ðEq 68Þ

The solution of (Eq 68) in the Laplace domain has the form
(Ref 1)

Journal of Materials Engineering and Performance Volume 28(6) June 2019—3169



�w ¼ � p2 þ C0

p2 � C0
�aþ V0

p2 � C0
ðEq 69Þ

�a ¼ V0
p2 þ B1pþ A1

pðp3 þ B1p2 þ C1pþ C0B1Þ
ðEq 70Þ

where M ¼ qhpr20 is the mass of the contact domain, p is the
Laplace variable, and

A1 ¼
E1

M
; B1 ¼

2Gð2Þ

r0
; C1 ¼ E1

2

M
þ 1

m

� �

¼ 2A1 þ C0;

C0 ¼
E1

m

3.1.2 Approach Based on Multi-term Ray Expansions
Outside Contact Domain. In order to analyze the impact
response of an elastic isotropic Uflyand–Mindlin plate via the
multiple-term ray expansion (Ref 1), it is needed to add the
boundary condition (Eq 42), ray expansions (Eq 40) and
(Eq 41) to the set of equations considered just above, as well
as the expansion for a

a ¼
X

6

i¼1

ait
i ðEq 71Þ

Thus, we could find the time dependence of the contact force

PðtÞ ¼ Pelast
isotr ¼ E1V0 t � E1

1

m
þ 2

M

� �

t3

6
þ E1ðGð1Þ þ Gð2ÞÞ

Mr0

t4

6

�

� E1
ðGð1Þ þ Gð2ÞÞ2

Mr20
� E1

6

1

m
þ 2

M

� �2
" #

t5

20

þ E1

Mr0

ðGð1Þ þ Gð2ÞÞ 15ðGð1Þ þ Gð2ÞÞ2 � Gð1ÞGð2Þ
h i

48r20

2

4

� E1

3
ðGð1Þ þ Gð2ÞÞ 1

m
þ 2

M

� �

� Gð2Þ2ðGð1Þ3 � Gð2Þ3Þ
h2ðGð1Þ2 � Gð2Þ2Þ




t6

30

�

ðEq 72Þ

Note that because the duration of the shock interaction
process is short, then it is reasonable to approximate the desired
functions within the contact domain by the truncated power
series with respect to time with an accuracy of t6.

Rossikhin and Shitikova (Ref 1, 92) generalized this
approach to investigate the low-velocity impact response of a
circular prestressed elastic orthotropic plate possessing curvi-
linear anisotropy. The equations of motion of such a plate in the
polar coordinate system taking into account transverse shear
deformations and rotary inertia have the form

@2u
@r2

þ 1

r

@u
@r

� Eh

Er

u
r2

þ br
@w

@r
� u

� �

¼ q
Cr

€u ðEq 73Þ

@2w

@r2
� @u

@r
þ 1

r

@w

@r
� u

� �

¼ q
KGrz

€wþ N

hKGrz
Dw ðEq 74Þ

where N is the constant compression force acting in the radial
direction, and Cr ¼ Er

1�rrrh
; Errh ¼Ehrr;

K ¼ 5
6 ; br ¼ 12KGrz

h2Cr
; D ¼ 1

r
@
@r r @

@r

� 

Solving equations (Eq 73, 74), we can determine the contact
force in the same manner as above for the isotropic plate free
from preloading. In the case under consideration, the contact
force with the accuracy of t6 can be written by adding two
additional terms to the relationship (Eq 72), where the last term

at t6 should be divided by f 2r , where fr ¼ 1� NðhKGrzÞ�1, in

order to take anisotropic features and preloading into account.
As a result, we have

PðtÞ ¼ Ppreload
orthot ¼ Pelast

isotr þ
E1

Mr0

Gð1Þ3Gð2Þ

12r20ðGð1Þ � Gð2ÞÞ
Eh

Er
� 1

� �

þ ð1� frÞGð2Þ2Gð1Þ

f 2r h
2

	 


t6

30

ðEq 75Þ

where qGð1Þ2 ¼ Cr and qGð2Þ2 ¼ KGrz:
Thus, a simple analytical relationship for the contact force

(Eq 75) for any compressive force less than the critical force
may be easily implemented in engineering practice required for
the analysis of the low-velocity behavior of pre-compressed
orthotropic plates.

At N ¼ N crit ¼ hKGrz ðfr ¼ 0; Gð2Þ ¼ 0Þ is a critical state,
which is most interesting, as in this case the plate occurs in the
critical state, that is, only one wave is generated as a result of
impact which further propagates with the velocity G(1), but the
second wave turns out to be ‘‘locked’’ within the contact
domain. The expression for the critical contact force can be
written as

PcritðtÞ ¼ E1V0 t � E1
1

m
þ 2

M

� �

t3

6
þ E1Gð1Þ

Mr0

t4

6

�

� E1
Gð1Þ2

Mr20
� E1M

6

1

m
þ 2

M

� �2
" #

t5

20

þ E1Gð1Þ

Mr0

Gð1Þ2

16r20
� E1

15r20

1

m
þ 2

M

� �	 


t6

30

�

ðEq 76Þ

Equation 76 is important for designers of composite
structures, as it can provide a basic understanding of the
structural response in the critical state and how it is affected by
different parameters, giving a foundation for the prediction of
impact damage.

3.2 Modeling the Contact Interaction of Thin Bodies Via
a Nonlinear Elastic Spring

The case of a nonlinear elastic spring the contact force
defined as

Fig. 6 A schematic diagram of impact interaction: (a) before
impact; (b) after impact
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P tð Þ ¼ E1ða� wÞ þ E2ða� wÞ3 ðEq 77Þ

where E2 is the spring�s nonlinear rigidity, was considered in
Ref 1.

Using multiple-term ray expansions for the problem of
impact of a sphere upon a nonlinear spring embedded into an
elastic Kirchhoff–Love plate, the contact force was found

PðtÞ ¼ Pnonlin
isot ¼ E1V0t þ V0Kt

3 þ E2
1V0ðGð1Þ þ Gð2ÞÞ

Mr0

t4

6

� E1V0
E1ðGð1Þ þ Gð2ÞÞ2

Mr20
þ K

1

m
þ 2

M

� �

( )

t5

20

þ E1

Mr0

E1ðGð1Þ þ Gð2ÞÞ 15ðGð1Þ þ Gð2ÞÞ2 � Gð1ÞGð2Þ
h i

48r20

8

<

:

� E1Gð2Þ2ðGð1Þ3 � Gð2Þ3Þ
h2ðGð1Þ2 � Gð2Þ2Þ þ ðGð1Þ þ Gð2ÞÞ K � E2

1

6

1

m
þ 2

M

� �	 
�

t6

30

ðEq 78Þ

where K ¼ E2V 2
0 � E2

1

6
1
m þ 2

M

� 

is the generalized parameter of
the nonlinear buffer. Such types of spring are used to protect
overlapping plates supporting lift shafts.

Comparison of equations (Eq 76) and (Eq 78) shows that
the nonlinear properties of the contact interaction influence the
coefficients at t3, t5 and higher orders of t.

4. Conclusion

This survey article overviews the impact response of solids
and structures within the framework of the wave theory of
impact. It is dedicated to the bright memory of Professor Yury
A. Rossikhin who has contributed a lot in the development of
the wave theory of impact based on the theory of discontinuities
and ray expansions, resulting in analytical solutions of intricate
problems of impact interaction of solids possessing different
features.

The wave theory of elastic impact has been extended by him
to thermoelastic, viscoelastic and preloaded bodies. The main
results in the field have been summarized in the state-of-the-art
articles (Ref 1, 41, 59-61), as well as in monograph (Ref 20)
and several entries in Encyclopedia of Thermal Stresses (Ref 8,
30) and Encyclopedia of Continuum Mechanics (Ref 10, 56-58)
published by Springer.
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